

Proudly Operated by Battelle Since 1965

Achieving a More Meaningful Assessment of Commercial Building Code Compliance

Michael Rosenberg - Pacific Northwest National Laboratory Poppy Storm - Ecotope

U.S. Department of Energy Building Energy Codes Program Energy Codes Commentator Webinar Series AIA Provider #: I014 AIA Course #: BECPWS1016 ICC Provider Course #9707 October 13, 2016

PREFERRED EDUCATION PROVIDER

PNNL-SA-121643

This webinar describes two recent studies that have attempted to develop a deeper and more meaningful assessment of commercial building code compliance. The first study conducted by PNNL tries to answer the question: "How much energy cost savings can be achieved through better compliance?" The second study conducted by Ecotope argues that evaluating codes should be directed at the perennial need to understand and improve the construction of new buildings.

At the end of this course, participants should be able to understand:

- Why are commercial energy code compliance assessments more challenging than residential assessments?
- What are more meaningful assessments of energy code compliance than simple pass fail metrics?
- How code evaluations can support interdependent efforts such as code design, enforcement training, and utility programs?
- What is the relationship between code compliance and post occupancy energy use?

Proudly Operated by **Baffelle** Since 1965

Study 1 - Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

Michael Rosenberg - PNNL

http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24979.pdf

Proudly Operated by **Battelle** Since 1965

Background

Why are Commercial Compliance Studies so Difficult Compared to Residential ?

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

	Residential	Commercial
# of Pages of Model Code (2015 IECC)	13 (Residential EE Chapter)	62 (Commercial EE Chapter)
# of Measures to Verify in Compliance Studies	11	~100
# New Code Changes Since 2004 (3 Code Cycles)	191	263
# New Code Changes Affecting Building Controls	4	70
Distinct Building Types	Single Family, Low Rise Multifamily	High Rise Multifamily, Warehouse, Office, School, Laboratory, Assembly, Sports Arena, Hospital, Medical Office Building, Retail, Hotel, Industrial, Gymnasium, Supermarket, Restaurant,
HVAC Equipment	Furnace, Heat Pump, Air Conditioning Unit, Wall Cadets, Radiant Floor	Furnace, Heat Pump, Air Conditioning Unit, Wall Cadets, Radiant Floor, VAV, MZ, WSHP, GSHP, FCU, Cooling Towers, Pumps, Chillers (8 types), PTHP, SPVHP, Boilers, Condensing Units, Chilled Beams,

Why are Commercial Compliance Studies so Difficult Compared to Residential ?

Commercial Compliance – Previous Work

Proudly Operated by **Battelle** Since 1965

- Previous DOE efforts focused on checklists and % compliance
- Binary decision for each requirement
- Impact of partial compliance not well understood or quantified
- Relative importance of requirements either ignored or assigned importance based on judgment

Commercial Compliance – Previous Work – Check List Approach

Proudly Operated by **Baffelle** Since 1965

90.1-2010 Section #	Plan Review	Complies?	Comments/Assumptions
4.2.2, 5.4.3.1.1, 5.7 [PR1] ¹	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the building envelope and document where exceptions are claimed. Envelope tradeoff option (5.6) or energy cost budget (11) submitted for buildings with vertical fenestration area >40% or skylight area >5%.	Complies Comples Not Comply Not Observable Not Applicable	
4.2.2, 6.4.4.2.1, 6.7.2 [PR2] ¹	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the mechanical systems and equipment and document where exceptions are claimed.	Complies Comples Not Comply Not Observable Not Applicable	
4.2.2, 6.7.2.3, 6.7.2.4 [PR5] ¹	Plans document that systems are balanced in accordance with generally accepted engineering standards. Detailed instructions for HVAC systems commissioning included on the plans or specifications for >=50,000 ft ² .	Complies Does Not Comply Not Observable Not Applicable	
4.2.2, 7.7.1, 10.4.2 [PR3] ¹	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the service water heating systems and equipment and document where exceptions are claimed. Service water pressure booster systems designed with pressure sensors, pressure reducers, and flow controls.	Complies Comples Not Comply Not Observable Not Applicable	
4.2.2, 8.4.1.1, 8.4.1.2, 8.7 [PR6] ²	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the electrical systems and equipment and document where exceptions are claimed. Feeder connectors sized in accordance with approved plans and branch circuits sized for maximum drop of 3%.	Complies Does Not Comply Not Observable Not Applicable	
4.2.2, 9.4.4, 9.7 [PR4] ¹	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the interior lighting systems and equipment and document where exceptions are claimed.	Complies Comples Not Comply Not Observable Not Applicable	
4.2.2, 9.7 [PR8] ²	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the exterior lighting systems and equipment and document where exceptions are claimed.	Complies Does Not Comply Not Observable Not Applicable	

Current Research Project Approach

Proudly Operated by Battelle Since 1965

- Forget the question; "does it comply?"
- Instead; how much energy cost savings could potentially be gained through better compliance with the code?
- How can that savings be captured effectively?

Current Research Project Approach

Proudly Operated by Battelle Since 1965

Simplified process to test the approach

- One building type
 - Office buildings with simple HVAC systems
- One climate zone
 - Climate zone 4C
- One code
 - 2012 IECC

Proudly Operated by Battelle Since 1965

Preliminary Analysis

1. Identify Applicable Requirements (2.3.1)

Proudly Operated by **Baffelle** Since 1965

- Identify all requirements in the 2012 IECC = 396
- Eliminate those not applicable to building type and CZ or not directly responsible for energy savings = 149 remaining
- Group into related measures = 63 relevant groups
 Example:

occupancy sensors must be present

+

occupancy sensors must be manual on

+

occupancy sensors must shut off within 30 minutes

1 occupancy sensor measure

2. Develop a Range of Conditions for Each Measure

► Develop a range of conditions expected to be encountered in the field. Code → Below → Worst

		Below-Code	Worst
Measure Name	Code-Condition	Condition	Condition
Roofs shall be	100% required U-	150% required	No insulation
insulated to meet CZ	value	U-value	
requirements			
Thermostat	Deadband 5 ⁰ F as	2 ⁰ F	No Deadband
deadband	required		
requirement			
Interior lighting	Meets whole	Exceeds whole	Exceeds whole
power allowance	building LPD	building LPD by	building LPD
		50%	by 100%

3. Simulate Measure Conditions to Assign Energy Cost Value

- Using prototype office building model simulate each condition to estimate lost energy cost savings
 - Used national average utility costs
 - Normalized cost impact to appropriate metric (i.e., ft², cfm, tons)

Measure Name	Metric	Code-Condition	Below-Code- Condition	Worst-Condition
Roofs shall be insulated to meet CZ requirements		100% req'd U- value	150% req'd U- value	No insul
Lost \$ savings	per ft2 net roof area	\$0.000	\$0.015	\$0.537
Interior lighting power allowance		Meets whole building LPD	Exceeds whole building LPD by 50%	Exceeds whole building LPD by 100%
Lost \$ savings	per ft2 building floor area	\$0.000	\$0.152	\$0.304

Proudly Operated by **Battelle** Since 1965

Field Work

4. Identify and Recruit Buildings

- Current research did not develop recruiting strategy or sampling metrics
- Contractor (Ecotope) used Dodge Database and cold calls
- Nine building sample
 - Recruiting success rate was 7.4% (9 out of 121 candidates).
 - On average, 10 phone contacts were necessary to screen, recruit, and schedule each successful site.
 - Recruiters spent about 135 person-hours to secure the nine buildings.

5. Field Audits

Proudly Operated by Battelle Since 1965

- Construction Document Review
- Field Audit
 - Determine Condition for Each Measure
 - 1 visit per site
 - Not all measures observable during single visit

Proudly Operated by Battelle Since 1965

Cacuation of Lost Savings

6. Calculation of Lost Energy Cost Savings from Field Data

Based on found condition and metric quantity, lost \$ savings is assigned to each measure and summed for total building impact

 $Measure \ lost \ savings = \frac{Condition \ lost \ savings}{metric \ unit} * \ found \ metric \ units$

Example Roof Insulation lost savings : Found condition: Roof insulation U-value = 150% code Roof area = 900 ft²

Roof Insulation lost savings = $\frac{\$0.015}{ft^2} * 900$ ft² = \$13.50

Building lost savings = \sum measure lost savings Sample lost savings = \sum building lost savings

Lost Energy Cost Savings Results – Nine Building Sample

Proudly Operated by **Battelle** Since 1965

Summary

- Of 63 measures, 19 not applicable in any building
 - 95% of all applicable measures were verifiable (plan or inspection)
- 75% of all measures applicable complied

	Building Identifier							Total		
	А	В	С	D	Е	F	G	Н	Ι	Sample
Building floor										
area, ft^2	1,056	1,540	2,897	4,554	2,940	7,075	2,595	900	3,600	27,157
Annual Lost										
Energy Cost										
Savings	\$223	\$515	\$550	\$573	\$218	\$101	\$638	\$204	\$351	\$3,372
Present Value of										
Lost Life Cycle										
Lost Life-Cycle	¢2 044	¢c 711	¢7 071	¢0.404	\$2.740	¢1 070	¢0 1 <i>C1</i>	¢2 720	¢5 106	¢16 120
Cost Savings	\$3,044	ФО,/11	\$7,071	JO,494	\$3,/49	\$1,272	JO,104	\$2,730	\$3,190	\$40,430

If all 9 buildings complied fully the total savings would \$3,372 annually or \$46,430 over the building life

- Method does not consider interactive impacts below windows + below HVAC ≠ below windows + code HVAC
- How important are interactions? Test
 - Develop average conditions for each measure in the sample
 - Simulate using prototype
 - Compare normalized lost savings between sum of individual measures and interactive simulation

Comparison of Savings Potential: Sum of Individual Measures vs. Interactive Impact

	Annual Lost Energy
Applied to Nine Building Sample	Cost Savings
Lost savings from interactive simulation (\$/yr)	\$3,603
Lost savings from sum of the individual measures (\$/yr)	\$3,372
Lost savings difference	\$231
Interactive effect	6.8%

Proudly Operated by **Battelle** Since 1965

- Auditor tracked time to verify compliance
 - Both measure specific and indirect (travel, security, accessing plans)
- Prorated indirect to each measure

Proudly Operated by **Battelle** Since 1965

	Verification
Measures with Lost Savings	hours
Mechanical systems commissioning requirement	0.24
Equipment sizing requirement	3.41
Building entrances shall be protected with an enclosed vestibule.	0.87
Thermostat setback and start/stop controls	2.55
Thermostat deadband requirement	2.56
Economizers have appropriate high-limit shutoff control and be integrated	3.00
Roofs shall be insulated to meet CZ requirements	2.47
Lighting commissioning requirement	2.90
Interior lighting power allowance	4.44
Window-to-wall ratio meets maximum limits.	4.25
Automatic time switch control	0.55
Economizer supplies 100% design supply air	2.89
Manual lighting control	2.74
Occupancy sensor control	3.36
Heat pump supplementary heat control	1.38
Slab-on-grade floors meet insulation requirements and are protected	2.66
Above grade frame walls shall be insulated to meet CZ requirements	3.34
Recessed lighting shall be sealed, rated and labeled.	0.98
Exit sign maximum power	2.78
SWH pipe insulation - non-recirculated	1.08
Daylight zone control	2.73
Duct insulation requirement	2.39
SWH heat trap	2.11
Water heater efficiency, electric	2.93
Damper control when space is unoccupied	2.17
Total for measures with below-code potential savings	60.8
Total for measures with no potential savings identified (met code)	40.9
Total for all applicable measures	102

24

Proudly Operated by **Battelle** Since 1965

_	Sample Lost Savings	Verification
Measures with Lost Savings	Life-Cycle	hours
Mechanical systems commissioning requirement	\$1,647	0.24
Equipment sizing requirement	\$13,054	3.41
Building entrances shall be protected with an enclosed vestibule.	\$1,758	0.87
Thermostat setback and start/stop controls	\$4,990	2.55
Thermostat deadband requirement	\$4,426	2.56
Economizers have appropriate high-limit shutoff control and be integrated	\$3,353	3.00
Roofs shall be insulated to meet CZ requirements	\$2,288	2.47
Lighting commissioning requirement	\$2,525	2.90
Interior lighting power allowance	\$3,705	4.44
Window-to-wall ratio meets maximum limits.	\$3,163	4.25
Automatic time switch control	\$280	0.55
Economizer supplies 100% design supply air	\$1,444	2.89
Manual lighting control	\$1,015	2.74
Occupancy sensor control	\$918	3.36
Heat pump supplementary heat control	\$356	1.38
Slab-on-grade floors meet insulation requirements and are protected	\$446	2.66
Above grade frame walls shall be insulated to meet CZ requirements	\$468	3.34
Recessed lighting shall be sealed, rated and labeled.	\$85	0.98
Exit sign maximum power	\$216	2.78
SWH pipe insulation - non-recirculated	\$64	1.08
Daylight zone control	\$121	2.73
Duct insulation requirement	\$76	2.39
SWH heat trap	\$25	2.11
Water heater efficiency, electric	\$5	2.93
Damper control when space is unoccupied	\$2	2.17
Total for measures with below-code potential savings	\$46,430	61
Total for measures with no potential savings identified (met code)	\$0	41
Total for all applicable measures	\$46,430	102

Proudly Operated by **Battelle** Since 1965

	Sample Lost Savings	Verification	Lost Saving
Measures with Lost Savings	Life-Cycle	hours	\$ / Hour
Mechanical systems commissioning requirement	\$1,647	0.24	\$6,741
Equipment sizing requirement	\$13,054	3.41	\$3,829
Building entrances shall be protected with an enclosed vestibule.	\$1,758	0.87	\$2,014
Thermostat setback and start/stop controls	\$4,990	2.55	\$1,953
Thermostat deadband requirement	\$4,426	2.56	\$1,726
Economizers have appropriate high-limit shutoff control and be integrated	\$3,353	3.00	\$1,118
Roofs shall be insulated to meet CZ requirements	\$2,288	2.47	\$926
Lighting commissioning requirement	\$2,525	2.90	\$871
Interior lighting power allowance	\$3,705	4.44	\$835
Window-to-wall ratio meets maximum limits.	\$3,163	4.25	\$744
Automatic time switch control	\$280	0.55	\$510
Economizer supplies 100% design supply air	\$1,444	2.89	\$499
Manual lighting control	\$1,015	2.74	\$370
Occupancy sensor control	\$918	3.36	\$273
Heat pump supplementary heat control	\$356	1.38	\$259
Slab-on-grade floors meet insulation requirements and are protected	\$446	2.66	\$167
Above grade frame walls shall be insulated to meet CZ requirements	\$468	3.34	\$140
Recessed lighting shall be sealed, rated and labeled.	\$85	0.98	\$87
Exit sign maximum power	\$216	2.78	\$78
SWH pipe insulation - non-recirculated	\$64	1.08	\$59
Daylight zone control	\$121	2.73	\$44
Duct insulation requirement	\$76	2.39	\$32
SWH heat trap	\$25	2.11	\$12
Water heater efficiency, electric	\$5	2.93	\$2
Damper control when space is unoccupied	\$2	2.17	\$1
Total for measures with below-code potential savings	\$46,430	60.8	\$764
Total for measures with no potential savings identified (met code)	\$0	40.9	\$0
Total for all applicable measures	\$46,430	102	\$455

26

Proudly Operated by Battelle Since 1965

Ranking Measures

Going Forward – Do We Need to Look at all Measures?

Proudly Operated by **Battelle** Since 1965

- Probably not realistic to verify all measures
- 63 for a simple building, could easily double for a complex building
- How to simplify in the future? Prioritize
 - Focus on measures with the biggest bang for the buck
 - Rank in 2 ways:
 - From Study \rightarrow \$ savings identified / hour spent on verification
 - From simulation sensitivity analysis \rightarrow Highest potential lost savings

Ranking Based on Field Studies

Pacific Northwest

Proudly Operated by Battelle Since 1965

* Results based on 9 buildings only. Will need additional data to draw conclusions

In this sample, 9 measures (14%) responsible for 81% for the savings

Summary of Measures and Instances in this Sample

Grouping by Lost Savings per Hour and Applicability	Mea #	asures	Applicabl #	e Instances %	Life-Cycle Lost Savings	% Lost Life- Cycle Savings
High lost \$/verification hour (>\$750/hour)	9	(14%)	61	21%	\$37,747	81%
Med lost \$/verification hour (\$750-\$400 /hour)	3	5%	18	6%	\$4,886	11%
Low lost \$/verification hour (<\$400/hour)	13	21%	90	31%	\$3,797	8%
Compliant with code	19	30%	120	42%	\$0	0%
Not applicable this sample	19	30%	0	0%	\$0	0%
Total	63		289		\$46,430	

Ranking Based on Sensitivity Analysis Simulation

- Worst case lost savings
- Simulation can lead to initial screening
- No need to look at measures that have no chance of being impactful

Proudly Operated by Baffelle Since 1965

Future Implications

Lessons Learned and Recommendations for Future Compliance Studies

Proudly Operated by **Battelle** Since 1965

- Prioritize measures to reduce study costs
 - Eliminate measures with low worst case potential lost savings based on simulation sensitivity analysis
 - Eliminate measures with low lost savings potential / verification hour based on data from future studies
- "Piggy back" assessment with jurisdiction compliance inspections
 - Too time consuming and low incidence rate with cold calls
- 1 visit is not enough to asses all measures
 - Follow residential approach for site visits
 - 1 visit per site at different phases of construction

DOE has awarded \$1.7 Million to the Institute of Market Transformation (IMT) to roll out this approach on up to 250 buildings in 3 states

Proudly Operated by **Baffelle** Since 1965

Study 2 - Measuring What Matters: A Methodology for Moving from Code Compliance to Code Evaluation

Poppy Storm - Ecotope

Measuring what Matters: A Methodology for Moving From Code Compliance Assessment to Code Evaluation

Presented by Poppy Storm, Ecotope, Inc. October 13, 2016 NORTHWEST ENERGY EFFICIENCY ALLIANCE

Codes Seek to Influence Current Practice...

... in order to reduce energy use overtime.

Evaluation approach moves away from narrow compliance determination for individual components toward building systems and impacts on actual energy use.

Current Practice & Actual Energy Use at the Heart of the Methodology

- Codes influence building characteristics
- Characteristics and design define energy use
- Energy use can be a gage of code progress over time
- Benchmarking and code compliance need the same core data:
 - Characteristics
 - Energy use

Approach Delivers Wide Spectrum of Value

- Benchmark characteristics and new construction practices
- Identify major compliance gaps
- Benchmark new construction EUIs
- Analyze relationship between characteristics, compliance and energy use
- Inform commercial code and program development
- Inform enforcement efforts
- Update commercial new construction baseline data
- Modeling inputs for *ex ante* savings estimates

Methodology Linked by Buildings Systems

Focus on "High Value" Aspects of Each Major System

- Envelope: overall UA based on individual component UAs
- Mechanical: equipment efficiency, economizer, heat recovery, controls
- Service water: equipment efficiency, pump scheduling, pipe insulation
- Lighting: interior LPD, exterior lighting power, controls

Compliance Assessment Steps

Overall Compliance by Major Code Components

Building Heat Loss Estimate Normalized by Floor Area

Mechanical Subcomponent Compliance

Interior Lighting Power Density by Building

Energy Performance Assessment Steps

EUI by Compliance (from Small Pilot)

Total EUI by End Use (from Small Pilot)

Comparing Building EUIs to the 2006 New Construction Baseline (from Small Pilot)

Tracking Progress Against State Energy Reduction Goals

LPD Benchmark (from Small Pilot)

Putting the Methodology into Practice

Contact Info

Poppy Storm Director of Policy and Planning Ecotope, Inc. poppy@ecotope.com 206.596.4705

COMcheck-Web - 90.1 (2013) Standard - Internet Explore - - -Password >>> Log In COMcheck-Web" Project title Email Address Register 🔬 | Forgotten Password? 90.1 (2013) Standard New Project 🔁 Reports 🔻 🚇 MECHANICAL REQUIREMENTS ENVELOPE INT. LIGHTING Uplicate Move Up Move Down X Delete Row: 2 Edit Roof Skylight Ext. Wall Int. Wall Window Door Basement Floor Fenestration Detail U-Facto Compon Building Area Typ **Construction Detail:** 1 Roof Insulation Entirely Above Deck 1 - Petall (Nonresidential 10000 03 0.025 2 Ext. Wall Wood-Framed, 24in. o.c. North V I - Retail (Nonresidential. 2600 ft⁻ 10 0.037 Vinyl Frame: Fixed * Window - Door ENERGY BUILDING TECHNOLOGIES PROGRAM Energy Efficiency & Renewable Energy CHECK COMPLIANCE & To display compliance results, click the Check Compliance but **Building Energy Codes** https://energycode.pnl.gov/COMcheckWeb/door.html#door **Resource Guide** ENERGY Energy Efficiency & Renewable Energy NERGY orge Officiency & BUILDING TECHNOLOGIES PROGRAM ANSI/ASHRAE/IES Standard 90.1-2010 & 2012 IECC Resource Guide Insulation Requirements in OR POLICY MAKERS Commercial Buildings for Mechanical and Service Hot-Water Piping The intent of the pipe insulation requirements is to reduce hot water (SHW) systems, thereby saving energy and reducing operating costs. Uninsulated piping systems that transport fluids can create water temperature irregularities, which ultimately requires additional heating or cooling and associated energy costs to bring the water to operating temperature. Any piping that carries heated or cooled water, including piping systems with external heating (e.g., heat trace or impedance heating), should Any insulated piping in areas exposed be thermally insulated to reduce heat to weather is required to be further loss or gain, allowing the fluid to be protected from exposure to sunlight. delivered at the intended temperature moisture, and wind-all of which can

Building Energy Codes Program -Resources

- Compliance software
- Technical support
- Code notes
- Publications
- Resource guides
- Training materials

www.energycodes.gov

Proudly Operated by Battelle Since 1965

Training Topic Ideas?

U.S. DI

B

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Give us your topic ideas

U.S. DEPARTMENT OF	Energy Efficie Renewable E	ency & nergy			EERE	Home Programs & Offices	Consumer Informati
Building	g Ener	gy Code	es Program		Building Energy Codes Search Help ≽	SEARCH	
НОМЕ	NEWS	EVENTS	ABOUT				
DOE » EERE » BTO	» <u>BECP</u> » <u>Reso</u>	urce Center			🔚 Site Map	Printable Version	🖸 SHARE
DEVELOPMENT ADOPTION COMPLIANCE REGULATIONS RESOURCE CENTER	Tra The B to a va availa	ining uilding Energy Cod ariety of special top ble in the full <u>Train</u> i	les Program (BECP) offers a varie ics and tutorials. A list of the most ng <u>Catalog</u> .	ety of training resources re t commonly requested mat	lated to the world of ene terials is included below.	rgy codes, ranging fro Additional resources	m overviews are also
FAQs TRAINING PUBLICATIONS RESOURCE GUIDE GLOSSARY RELATED LINKS	55 To 	pics <u>Codes 101: An On</u> Adoption. Complia Energy Code Con Achieving and Evi REScheck Basics Lighting Requirem <u>COMcheck Basics</u> 2015 IECC – Iemer Into to Commerci Daylighting Contro Achieving a More Sidential Bui 2015 International	verview of Building Energy Codes ance & Enforcement (ACE) Learni upliance Paths: Which is best for y aluating Residential Compliance o tents and compliance with the 201 a rgy Rating Index (ERI) Compliance al Building HVAC Systems and Er ols Meaningful Assessment of Comm ildings Energy Conservation Code (IEC)	ing Series /ou2 15 IECC and ASHRAE 90. e Alternative nergy Code Requirements nercial Building Code Com	<u>1-2013</u> <u>pliance</u> – New		
	Co AN Inte Ottl	2012 International 2009 International SI/A SHRAE/IE ANSI/ASHRAE/IE ANSI/ASHRAE/IE ANSI/ASHRAE/IE ernational Ene Commercial Requ Commercial Requ Commercial Requ Commercial Requ Commercial Requ	Inergy Conservation Code (IEC) Energy Conservation Code (IEC) Ildings S Standard 90.1: S Standard 90.1-2013 S Standard 90.1-2010 SNA Standard 90.1-2007 ergy Conservation Code (irements of the 2015 IECC irements of the 2015 IECC irements of the 2019 IECC irements of the 2009 IECC	IECC):			

https://www.energycodes.gov/training

Proudly Operated by Battelle Since 1965

Building Energy Codes Program

www.energycodes.gov/training

BECP help desk

https://www.energycodes.gov/HelpDesk

Proudly Operated by **Battelle** Since 1965

Backup Slides

1. Identify Applicable Requirements Measure List (2.3.1)

Proudly Operated by Baffelle Since 1965

Roofs shall be insulated to meet CZ requirements	Demand control ventilation
Skylight curbs shall be insulated	Energy recovery requirement
Above grade frame walls shall be insulated to meet CZ requirements	Duct insulation requirement
Above grade mass walls shall be insulated to meet CZ and density requirements	Duct leakage requirement
Below grade walls shall meet insulation requirements and be protected	Lighting Commissioning requirement
Exterior floors shall meet the minimum R-value or U-value by assembly type	Mechanical systems Commissioning requirement
Slab-on-grade floors shall meet insulation requirements and be protected	Fan power limit requirement
Opaque doors shall meet U-factor requirements	Economizer supplies 100% design supply air
Window-to-wall ratio shall meet maximum limits	Economizers have appropriate high-limit shutoff control and be integrated
Skylight to roof ratio shall meet maximum limits	Water heater efficiency, Gas
Windows shall meet U-factor requirements	Water heater efficiency, Electric
Windows shall meet U-factor requirements In entry doors	SWH Heat Trap
Windows shall meet SHGC requirements	SWH Pipe Insulation - Recirculated
Skylights shall meet U-factor requirements	SWH Pipe Insulation - Non-recirculated
Skylights shall meet SHGC requirements	Manual lighting control
Building shall meet continuous air barrier requirements	Automatic time switch control
Recessed lighting shall be sealed, rated and labeled	Occupancy sensor control
Fenestration assemblies shall meet air leakage requirements	Daylight zone control
Bld openings to shafts, stairways, and elevator lobbies meet air leakage reqmts	Display lighting control
Stairway and shaft vents shall be provided with Class I motorized dampers	Task lighting control
Loading dock doors shall be equipped with weather seals	Exterior lighting control
Building entrances shall be protected with an enclosed vestibule	Tandem wiring
Equipment sizing requirement	Exit sign maximum power
Packaged air conditioner efficiency	Interior lighting power allowance
Packaged heat pump efficiency	Exterior lighting power allowance
Gas furnace efficiency	Optional Additional packaged air conditioner cooling Efficiency
Thermostatic control is used for individual zones	Optional Additional packaged heat pump efficiency
Heat pump supplementary heat control	Optional Additional packaged air conditioner furnace efficiency
Thermostat deadband requirement	Optional Additional Reduced whole building LPD
Thermostat setback and start/stop controls	Optional onsite renewable
Optimal start controls	

5. Field Audits

Proudly Operated by **Battelle** Since 1965

