

Proudly Operated by Battelle Since 1965

Energy Code Compliance for Metal Buildings

Dan Walker, MBMA Pam Cole, PNNL

U.S. Department of Energy Building Energy Codes Program Energy Codes Commentator Webinar Series AIA Provider #: I014 AIA Course #: BECPWS0118 ICC Provider January 11, 2018

This webinar, which is part of DOE's Building Energy Codes Program Energy Codes Commentator webinar-based training series, will provide an introduction into metal building types and systems and how they are defined in the national energy codes and standards. The presentation will focus on metal building envelope assemblies and applications (e.g., roofs, exterior walls, fenestration, air barriers, and air leakage). Learn about how the energy code affects various aspects of metal building envelopes and various code compliance options. A demo of DOE's energy code compliance software will be shown focusing on how the different metal building assemblies are defined and calculated for code compliance.

Learning Objectives

3

- 1. Learn how the building energy code defines a metal building.
- 2. Understand the differences between unconditioned, conditioned, and semi-heated spaces.
- 3. Be able to look up assembly U-Factors for metal building assemblies.
- 4. Lean how to show compliance using COM*check*.

Energy Code Compliance for Metal Building Systems

Dan Walker, P.E. Associate General Manager Metal Building Manufacturers Association

Energy Code Compliance for Metal Building Systems

Part 1 – Introduction & Metal Building System Primer Part 2 – Prescriptive Compliance - Insulation Part 3 – COM*check*

Who is MBMA?

- Founded in 1956 Cleveland Based
- 13 Charter Member Companies
- Today 43 Member Companies & 71 Suppliers
- Metal building systems ~45% of new low rise non-residential construction (MBMA stats)
- Roughly 9,000 contractors affiliated with member companies and ~ 28,000 projects / YR

Metal Building System (MBS) - Defined

- Not Pre-Fabricated Modular Buildings, nor are they Pre-Engineered.
- Metal Building Systems are designed using the systems approach, in which standard components are used to fit customized applications. Each building system is custom engineered to meet customer needs and for the particular application.

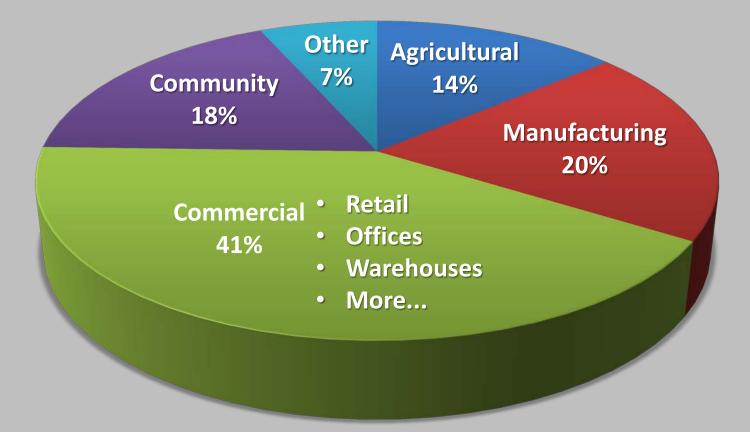
Metal Building Envelope

Primary Framing

- Often Tapered
 Columns & Beams
- Secondary Framing
 - Purlins & Girts
- Open Joists
 Metal Cladding

Roof & Wall Sheeting

Bracing


- Lateral & Stability
 Connections
 - Screws & Bolts
- Additional Items
 - Insulation
 - Windows, Doors, Skylights

Energy Codes

- Differentiate by
 - Building type
 - Climate zone
 - Building construction

Metal Buildings by Building Type

Building Types

Manufacturing / Distribution

Agricultural

K-12 Schools

Fire Stations

Recreational Facilities

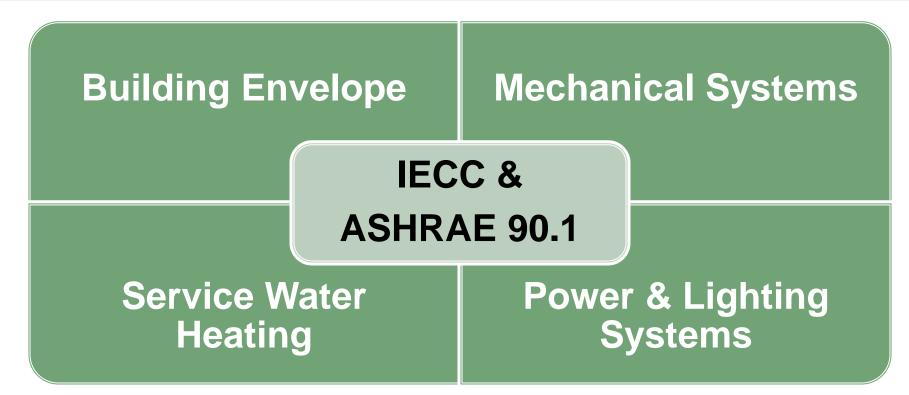
Aircraft Hangars

Building Types

Community Centers

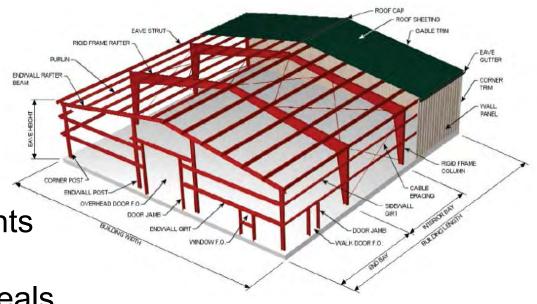
Office / Warehouse

Retail


Religious

Energy Code defines a Metal Building

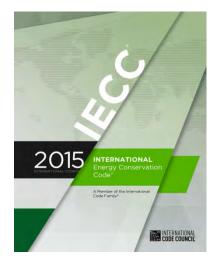
- Metal Roof & Metal Wall Panels
- Purlins (roof) spaced nominally 5 feet
- Girts (wall) average52 inch spacing
- Metal building insulation further defined



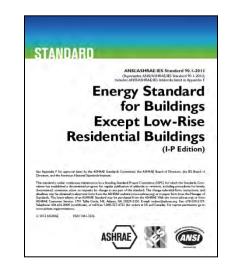
Primary Focus Areas

Building Envelope – Focus Areas

- Insulation
 - Roof
 - Walls, above/below grade
 - Walls, below grade
 - Floors, Slab-on-grade
- Cool Roofs
- Windows, Doors, Skylights
- Air Barrier, Air Leakage
- Loading Dock Weatherseals
- Vestibules



IECC and 90.1


- IECC points to ASHRAE 90.1 to define all building envelope construction types
- IECC references 90.1 on a number of occasions
- In fact, 90.1 is the first choice offered

IECC vs 90.1 – One of the Differences

 Fully Insulated despite level of heating or cooling

 Separate requirements for semi-heated space definition

Space Conditioning Needs

Agriculture

Health Care

Religious

Aircraft Hangar

Restaurant

Office/Warehouse

Space Conditioning Types

- International Energy Conservation Code (IECC)
 - Low Energy Buildings Exempt from building thermal envelope provisions if peak design rate of energy usage < 3.4 Btu/hr/ft²
 - <u>Conditioned Space</u> Area or room within a building being heated or cooled...or ≥ 3.4 Btu/hr/ft²

Space Conditioning Types

ASHRAE 90.1

- <u>Semi-Heated Space</u> Space that is heated, but not to comfort levels, and is not cooled
- <u>Conditioned Space</u> a cooled space, a heated space, or an indirectly conditioned space
 - 90.1 has a table for heating output by climate zone
- <u>Unconditioned Buildings</u> Exempt from envelope provisions if peak design rate of energy usage < 3.4 Btu/hr/ft²

Compliance Methods

Prescriptive

- Specific requirements for insulation, fenestration, air leakage
- R-value method U-factor method
- Easiest, but limiting

Trade-Off

- UA Trade-off
- COMcheck software
- U-factor substitution
- Building envelope
- Easy to comply

Performance

- Whole building energy modeling
- Envelope, Mechanical, Lighting, ...
- More complicated

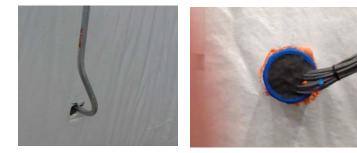
Air Leakage Provisions

2015 IECC

- Whole building testing at <0.40 cfm/ft² <u>Of</u> the following:
- Air barrier sealing & placement and comply w/
 - Materials with air permeance ≤ 0.004 cfm/ft² or
 - Assemblies with air permeance 0.04 cfm/ft²

ASHRAE 90.1-2013

- Air barrier sealing & placement and comply w/
 - Materials with air permeance ≤ 0.004 cfm/ft² or
 - Assemblies with air permeance 0.04 cfm/ft²


Air Barrier - Requirements

- All seams, penetrations, and transitions between materials to be sealed
- Continuous and resist positive & negative pressures
- Can be placed inside or outside of building envelope
- 2015 IECC exempts CZ 2B
- 90.1-2013 exempts
 - Single wythe concrete masonry buildings in CZ 2B
 - Semiheated Spaces in CZ 1 through CZ 6

Application to MBS

Rips or Tears

Penetrations Sealed

Insulation Seams

Interface of: Wall to Floor Wall to Wall Wall to Roof

Materials – Compliance Option

Similar list in ASHRAE 90.1-2013

■ ≤ 0.004 cfm/ft² under 75 Pa tested per ASTM E 2178 or use the deemed to comply list

Plywood ≥ 3/8"	Built-up roofing membrane
OSB ≥ 3/8"	Modified bituminous roof membrane
Extruded polystyrene insulation board $\geq \frac{1}{2}$ "	Fully adhered single-ply roof membrane
Foil-faced urethane insulation board $\geq \frac{1}{2}$ "	Portland cement/sand parge, stucco, or gypsum plaster
Closed cell spray foam min. density 1.5 pcf $\ge 1-\frac{1}{2}$ "	Cast-in-place and precast concrete
Open cell spray foam density btwn 0.4 & 1.5 pcf $\ge 4-\frac{1}{2}$ "	Fully grouted concrete block masonry
Gypsum board $\geq \frac{1}{2}$ "	Sheet steel or aluminum
Cement board $\geq \frac{1}{2}$ "	Solid or hollow masonry of clay or shale

Materials – MBS Application

 Sheet Steel meets 0.004 cfm/ft² air permeability, per the deemed to comply list.

Assemblies – Compliance Options

\leq 0.04 cfm/ft² under 75 Pa tested per

ASTM	ASTM	ASTM	ASTM			
E 2357	E 1677	E 1680	E 283			
 Air Leakage of Air Barrier Assemblies 	 Air Barrier Material or System for Low-Rise Framed Building Walls 	 Air Leakage through Exterior Metal Roof Panel Systems 	 Air Leakage through exterior windows, curtain walls, and doors 			

Or use the deemed to comply list for concrete masonry wall systems

Assemblies – MBS Application

- 2011 NAHB Research Center
 Typical MB walls tested to meet ASTM E 283 – 8 Tests
 - Fiberglass, vapor retarder sealed
 - R-13 (0.0164 cfm/sf)
 - R-13 + R-30 Cavity Filled (0.0162 cfm/sf)
 - w/ flange brace hole (0.0198 cfm/sf)

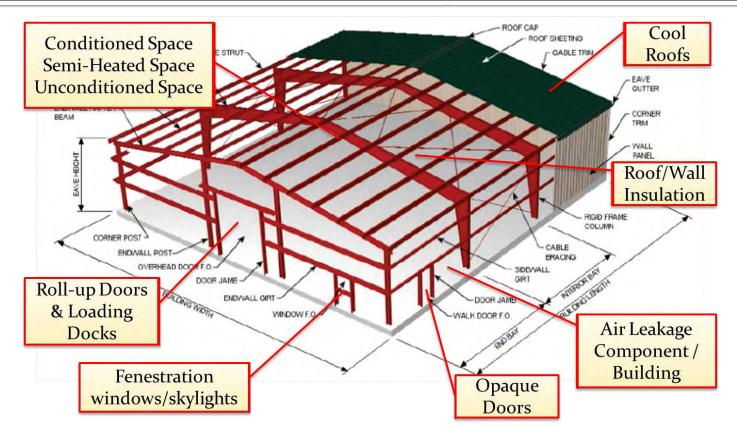
Assemblies – MBS Application

- Typical MB roofs tested to meet ASTM E 1680
 - Standing Seam or Through Fastened Roof
 - Purlins
 - Insulation (may or may not be included)

Whole Building – MBS Application

- Can exceed U.S. Army Corps of Engineers limits of 0.25 cfm/sf
- ORNL full scale study
 - Pre-Retrofit = 0.26 cfm/sf
 - Post-Retrofit = 0.12 cfm/sf

ORNL One-Story Flexible Research Platform Test Building Air Leakage Study



OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

Part 2 Prescriptive Compliance - Insulation

Energy Codes and a Metal Building

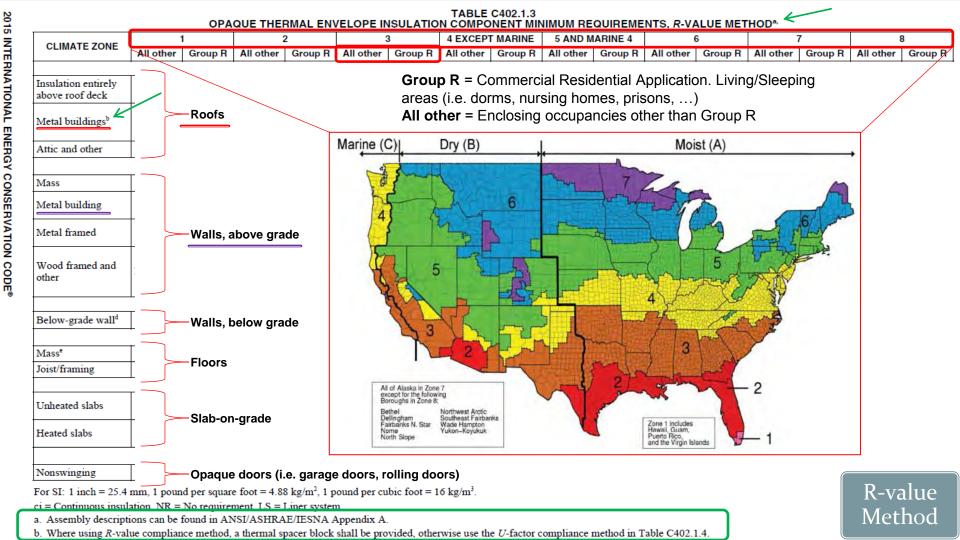
R-value Method

 C402.1.3 Insulation component R-valuebased method -

C402.2 and C402.4

- C402.2.2.2 Roof assembly Table C402.1.3
- C402.2.3 Above-grade walls -Table C402.1.3
 - C402.4 Fenestration C402.4 through C402.4.4 and Table C402.4
- Daylight controls –

Fenestration sections above and C405.2.3.1


U-factor Method

 C402.1.4 Assembly U-factor, Cfactor, or F-factor-based method – Table C402.1.4

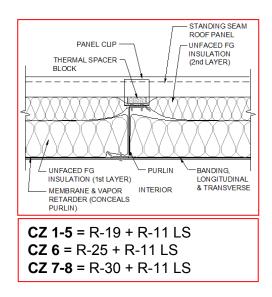
2015 IECC Table

CLIMATE ZONE	1		2		3		4 EXCEPT MARINE		5 AND MARINE 4		6		7		8	
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
							Re	oofs								
Insulation entirely above roof deck	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-25ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-35ci	R-35ci	R-35ci	R-35ci
Metal buildings ^b	R-19+ R-11 LS	R-19 + R-11 LS	R-19 + R11 LS	R-19 + R-11 LS	R-19+ R-11 LS	R-25 + R-11 LS	R-25 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS					
Attic and other	R-38	R-38	R-38	R-38	R-38	R-38	R-38	R-38	R-38	R-49	R-49	R-49	R-49	R-49	R-49	R-49
					100		Walls, ab	ove grade					-			
Mass	R-5.7ci ^c	R-5.7cic	R-5.7cr	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci	R-13.3ci	R-15.2ci	R-15.2ci	R-15.2ci	R-25ci	R-25ci
Metal building	R-13+ R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13+ R-19.5ci	R-13 + R-13ci	R-13+ R-19.5ci

TABLE C402.1.3 OPAQUE THERMAL ENVELOPE INSULATION COMPONENT MINIMUM REQUIREMENTS, R-VALUE METHOD*

2015 IECC Table - Roofs

TABLE C402.1.3 OPAQUE THERMAL ENVELOPE INSULATION COMPONENT MINIMUM REQUIREMENTS, R-VALUE METHOD®


CLIMATE ZONE	10.000	1		2		3	4 EXCEPT	MARINE	5 AND N	ARINE 4		6		7	1	8
CLIMATE ZONE	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
							Re	oofs								
Metal buildings ^b	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS		1	R-19 + R-11 LS	R-19 + R-11 LS	1	R-25 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS

Note a - Assembly Descriptions can be found in ASHRAE 90.1 Appendix A under:

- A2.3 Metal Building Roofs
- A2.3.2.4 Liner System (Ls)

Note b summarized: R-value method requires thermal spacer block.

Thermal spacer blocks are used with Standing Seam Roofs, not Through Fastened Roofs

R-value Method

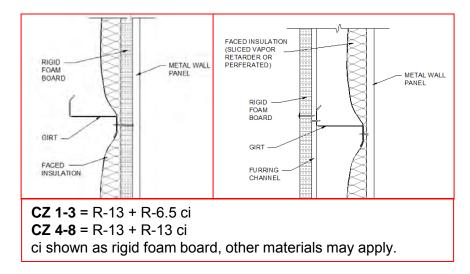

2015 IECC Table – Above-Grade Walls

TABLE C402.1.3 OPAQUE THERMAL ENVELOPE INSULATION COMPONENT MINIMUM REQUIREMENTS, R-VALUE METHOD^a.

CLIMATE ZONE	1		2		3	3		4 EXCEPT MARINE		5 AND MARINE 4		6		7		B
CLIMATE ZONE	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
								oove grade								
Metal building	R-13+ R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci		R-13 + R-6.5ci									R-13+ R-19.5ci	R-13 + R-13ci	R-13+ R-19.5ci

ci = Continuous Insulation. Insulating material that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior or exterior or is integral to any opaque surface of the building envelope.

Note a - Assembly Descriptions can found in ASHRAE 90.1 Appendix A A3.2.2 Rated R-Value of Insulation for Metal Building Walls

U-factor Method

2015 IECC Table - Roofs

နို

TABLE C402.1.4 OPAQUE THERMAL ENVELOPE ASSEMBLY MAXIMUM REQUIREMENTS, U-FACTOR METHOD^{®, b}

	CLIMATE ZONE	1		2		\$	3	4 EXCEPT MARINE		AND MARINE 4		6		7		8	
		All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
								Ro	ofs	·							
	Insulation entirely above roof deck	U-0.048	U-0.039	U-0.039	U-0.039	U-0.039	U-0.039	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.032	U-0.028	U-0.028	U-0.028	U-0.028
C	Metal buildings	U-0.044	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.035	U-0.031	U-0.031	U-0.029	U-0.029	U-0.029	U-0.029
	Attic and other	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.027	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021	U-0.021

a. Use of Opaque assembly U-factors, C-factors, and F-factors from ANSI/ASHRAE/IESNA 90.1 Appendix A shall be permitted, provided the construction, excluding the cladding system on walls, complies with the appropriate construction details from ANSI/ASHRAE/ISNEA 90.1 Appendix A.

b. Opaque assembly U-factors based on designs tested in accordance with ASTM C1363 shall be permitted. The R-value of continuous insulation shall be permitted to be added to or subtracted from the original

CZ 1-5: U-0.035 CZ 6: U-0.031 CZ 7-8: U-0.029

Note: Doesn't tell you what type of insulation system to use.

Note a – Allows 90.1 Assemblies

Note b – Also allows U-factors by suppliers if validated by testing means

Consider contacting MBMA Building Systems Members and MBMA Associate Members for product specific options.

- Fiberglass
- Continuous Insulation
- Insulated Metal Panels

U-factor Method

4

2015 IECC Table – Above-Grade Walls

			OPAQUE	THERMA		OPE ASSE	TABLE MBLY MA	C402.1.4 XIMUM R	EQUIREM	ENTS, U-F	ACTOR M	ETHOD ^{a, b}				
CLIMATE ZONE	1		2		4	3	EXCEPT	4 MARINE	AND M	5 ARINE 4		6	1.00	7		B
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R

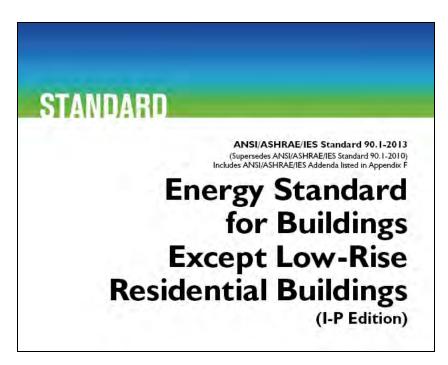
Walls, above grade																
Mass	U-0.151	U-0.151	U-0.151	U-0.123	U-0.123	U-0.104	U-0.104	U-0.090	U-0.090	U-0.080	U-0.080	U-0.071	U-0.071	U-0.061	U-0.061	U-0.061
Metal building	U-0.079	U-0.079	U-0.079	U-0.079	U-0.079	U-0.052	U-0.039	U-0.052	U-0.039							
Metal framed	U-0.077	U-0.077	U-0.077	U-0.064	U-0.057	U-0.064	U-0.052	U-0.045	U-0.045							
Wood framed and other ^c	U-0.064	U-0.051	U-0.051	U-0.051	U-0.051	U-0.036	U-0.036									

a. Use of Opaque assembly U-factors, C-factors, and F-factors from ANSI/ASHRAE/IESNA 90.1 Appendix A shall be permitted, provided the construction, excluding the cladding system on walls, complies with the appropriate construction details from ANSI/ASHRAE/ISNEA 90.1 Appendix A.

b. Opaque assembly U-factors based on designs tested in accordance with ASTM C1363 shall be permitted. The R-value of continuous insulation shall be permitted to be added to or subtracted from the original

CZ 1-3: U-0.079 CZ 4-8: U-0.052

Note a – Allows 90.1 Assemblies

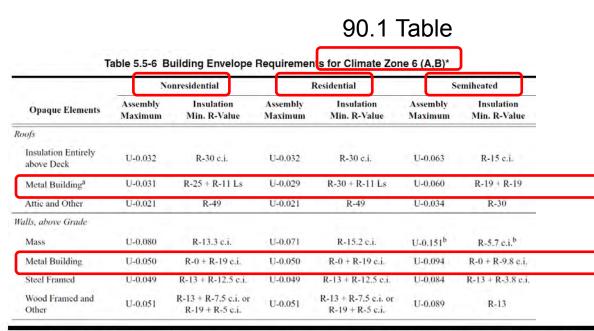

Note b – Also allows U-factors by suppliers if validated by testing means

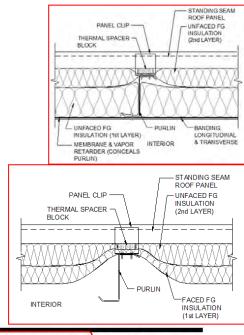
Consider contacting MBMA Building Systems Members and MBMA Associate Members for product specific options.

- Fiberglass
- Continuous Insulation
- Insulated Metal Panels

From IECC to ASHRAE Standard 90.1

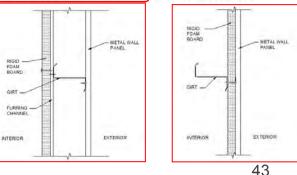
2015 IECC refers to 90.1-2013 as a compliance option


Requirements based on:


Space Conditioning Type Climate Zone

Two methods:

U-factor Method



* The following definitions apply: c.i. = continuous insulation (see Section 3.2), FC = filled cavity (see Section A2.3.2.5), Ls = liner system (see Section A2.3.2.4), NR = no (insulation) requirement.

a. When using the R-value compliance method for metal building roofs, a thermal spacer block is required (see Section A2.3.2).

U-factor Method

TABLE A2 3 3 Assembly IL Factors for Metal Building Boofs

	TA	BLE A2.3.3	Assem	bly U-Fa	actors f	r Metal	Buildin	g Roofs				
Insulation	Rated	Overall U-Factor		Plu		ll U-Factor uous Insula				ning)		
System	R-Value of Insulation	for Entire Base Roof	100		Rate	ed R-Value	of Conti	nuous Insu	lation		1.0	
1.11		Assembly	R-6.5	R-9.8	R-13	R-15.8	R-19	R-22.1	R-25	R-32	R-38	Options to meet
Standing Seam	Roofs with Ther	mal Spacer Blo	ocks ^{a, b}									U-factors in CZ 6:
	None	1.280	0.137	0.095	0.073	0.060	0.051	0.044	0.039	0.031	0.026	
	R-10	0.115	0.066	0.054	0.046	0.041	0.036	0.032	0.030	0.025	0.021	Conditioned: U-0.031
Single Lours	R-11	0.107	0.063	0.052	0.045	0.040	0.035	0.032	0.029	0.024	0.021	Semi-Heated: U-0.060
Single Layer	R-13	0.101	0.061	0.051	0.044	0.039	0.035	0.031	0.029	0.024	0.021	
	R-16	0.096	0.059	0.049	0.043	0.038	0.034	0.031	0.028	0.024	0.021	
	R-19	0.082	0.053	0.045	0.040	0.036	0.032	0.029	0.027	0.023	0.020	
	R-10 + R-10	0.088	0.056	0.047	0.041	0.037	0.033	0.030	0.028	0.023	0.020	
	R-10 + R-11	0.086	0.055	0.047	0.041	0.036	0.033	0.030	0.027	0.023	0.020	
	R-11 + R-11	0.085	0.055	0.046	0.040	0.036	0.033	0.030	0.027	0.023	0.020	
	R-10 + R-13	0.084	0.054	0.046	0.040	0.036	0.032	0.029	0.027	0.023	0.020	
	R-11 + R-13	0.082	0.053	0.045	0.040	0.036	0.032	0.029	0.027	0.023	0.020	
Double Layer	R-13 + R-13	0.075	0.050	0.043	0.038	0.034	0.031	0.028	0.026	0.022	0.019	
	R-10 + R-19	0.074	0.050	0.043	0.038	0.034	0.031	0.028	0.026	0.022	0.019	
	R-11 + R-19	0.072	0.049	0.042	0.037	0.034	0.030	0.028	0.026	0.022	0.019	
	R-13 + R-19	0.068	0.047	0.041	0.036	0.033	0.030	0.027	0.025	0.021	0.019	
	R-16+R-19	0.065	0.046	0.040	0.035	0.032	0.029	0.027	0.025	0.021	0.019	
	R-19 + R-19	0.060	0.043	0.038	0.034	0.031	0.028	0.026	0.024	0.021	0.018	
	R-19 + R-11	0.037		-								
	R-25 + R-8	0.037					1 -	- Cont	. Insu	lation	Only	
Liner System	R-25 + R-11	0.031					2 -	- Fiber	glass	Syste	ems + (Continuous Insulation
Liner aystem	R-30 + R-11	0.029					3 -	- Fiber	glass	Only	(Cond	itioned case)
	R-25 + R-11 + R-11	0.026					4 -	- Or	simply	y use	the R-	value method for the Roof only

Use the Contact Us Form at <u>http://www.mbma.com</u> Follow us on Twitter: @LearnAboutMBMA YouTube: www.youtube.com/MBMAmedia

Part 5 Building Envelope Trade-Off Method

2015 IECC Component Performance Alternative

DOE COMcheck Software Program

Energy Efficiency & Renewable Energy

COM*check* and Metal Buildings Demo

Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy

2015 IECC Component Performance Alterative (i.e. Trade-Off Option)

Section C402.1.5 (New)

Proposed U-, F- and C-factors

COMPARED to

Prescriptive U-, F- and C-factors

• $A + B + C + D + E \leq Zero$

- A = Roof & Above Grade Walls, & Fenestration
 - = UA Dif +/-
- B = Slab-On-Grade
 = FL Dif +/-
- C = Below Grade Walls
 - = CA Dif +/-
- D = Windows above 30% Area
 - = UA Dif + only
- E = Skylights above 3% Area
 = UA Dif + only

COMcheck Overview

TODAY'S PRESENTATION

- High Level Overview
 - Input Screens
 - Building Envelope Only
 - Overview of Checklists
- Metal Building Application
 - Primary Focus
 - Case Studies

TOPICS NOT COVERED

- Listen to PNNL Webinar
- COMcheck Basics (2016)
- www.energycodes.gov/training
- Detailed Review of
 - Building Envelope, Lighting, & Mechanical Inputs/Outputs
 - Understand Compliance Reports
 - Includes a Metal Building Case Study

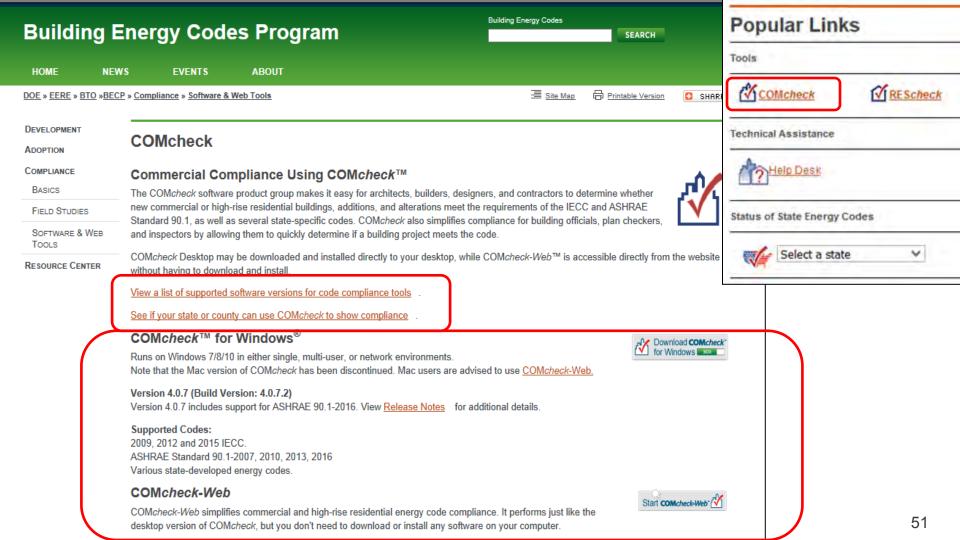
- COMcheck Basics 120 Minute Webinar
 - Recorded June 2016, Listen on Demand
- Alterations using COMcheck 90 Minute Webinar
 - Recorded in February 2017, Listen on Demand

COM*check*™ Basics and Compliance Determination

PAM COLE, PACIFIC NORTHWEST NATIONAL LABORATORY BOB SCHULTZ, PACIFIC NORTHWEST NATIONAL LABORATORY

2016 Department of Energy National Energy Codes Conference Building Energy Codes Program Showing Compliance for Additions and Alterations using REScheck and COMcheck

Pam Cole - Pacific Northwest National Laboratory



U.S. Department of Energy Building Energy Codes Program Energy Codes Commentator Webinar Series

PNNL-SA-123839

100

https://www.energycodes.gov/resource-center/training

COMcheck – Allows all different roof and wall types...including hybrid construction

Agriculture

Health Care

Religious

Restaurant

Office/Warehouse

COMcheck

Webbedack-CDManeck 4023 Code 901 (2013) Standard Else Ean Yeev Options Code Helo		
Project Envelope Interior Lighting Exterior Lighting Mechanical	Requirements	
Location State Colorado Olfy Demon Climate zone Se Finale Type @ New Construction @ Atterations Finale States Finale St	Building Envelope Area Types Interior Lighting Method and Areas Extensor Lighting Areas Add Dateter Displicate Building Type Area Description Area 1 Olick is salest building type +	"RESKTOP"
Edit Proged Detailson the conciliance centricate. TateStatParmd QenatiAcant DestionerContractor Hotes V CheckEnvelope Compliance ex testeEnvelope	Code/Location TED interior Lip Code 90.1 (2012) Standard ·	Project Itile District Annual District
XXE	Start: Coloreds C: C: Coloreds C: C: C	Testing Area Area Description Space Conditioning Area

Resources

Energy Design Guide for Metal Building Systems

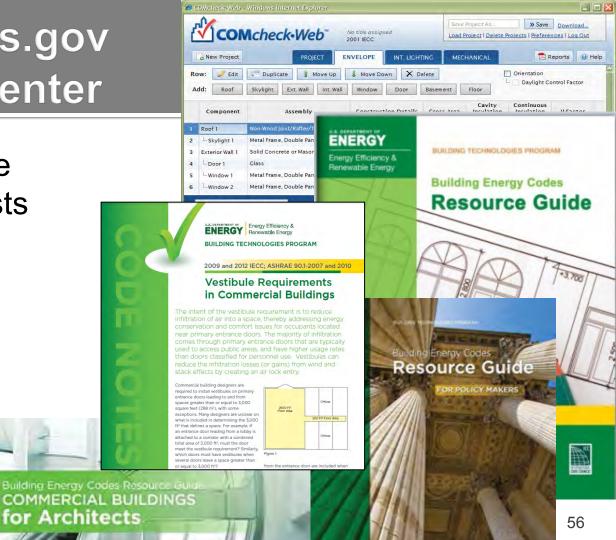
Energy Design Guide for Metal Building Systems (Jan. 2017)

200+ Pages

- Ch. 1 Introduction
- Ch. 2 MBS & Applications
- Ch. 3 Energy Code Fundamentals
- Ch. 4 Energy Codes & Standards
- Ch. 5 Compliance Tools
- Ch. 6 Insulating MBS
- Ch. 7 Cool Roofs
- Ch. 8 Daylighting
- Ch. 9 Green Building
- Ch. 10 Advanced Energy Codes
- Appendix A PV Roof Panels
- **Appendix B Daylighting Design**

Energycodes.gov **Resource Center**

ENERGY


11 11 11 11 11

DUILDING

PROGRAM

TECHNOLOGIES

- Compliance software
- **Compliance checklists**
- **Technical support**
- Code notes
- **Publications**
- **Resource** guides
- **Training materials**

Building Energy Codes Commentator Series Training Topic Ideas?

Proudly Operated by Battelle Since 1965

Give us your topic ideas

https://www.energycodes.gov/training

HOME NEW	EVENTS ABOUT		
DOE » EERE » BTO »BEC!	» <u>Resource Center</u>	這 <u>Site Map</u> 日 <u>Printable Version</u>	Bookmark and Share
DEVELOPMENT ADOPTION COMPLIANCE RESOURCE CENTER		ety of training resources related to the world of energy codes, ranging from t commonly requested materials is included below. Additional resources are	
FAQs	Topics		
PUBLICATIONS	Codes 101: An Overview of Building Energy Codes Adoption, Compliance & Enforcement (ACE) Learnin		
RESOURCE GUIDES	Energy Code Compliance & Enforcement (ACE) Learning Energy Code Compliance Paths: Which is best for y Achieving and Evaluating Residential Compliance o	you?	
GLOSSARY	<u>REScheck Basics</u>	or right Linvelopes	
Related Links	Lighting Requirements and compliance with the 201 COMcheck Basics 2015 IECC – Energy Rating Index (ERI) Compliance Intro to Commercial Building HVAC Systems and Er Daylighting Controls Achieving a More Meaningful Assessment of Comm What You Need to Know about the New Energy Sta Showing Compliance for Additions & Alterations Usi Do Code Controls Requirements Save Energy in Re REScheck-Web: New Features and Functions Buried Ducts: Advantages, Challenges, and New Og Energy Code Compliance for Metal Buildings – New	e Alternative nergy Code Requirements nercial Building Code Compliance andard for Commercial Buildings: Standard 90.1-2016 sing REScheck & COMcheck eal Buildings? options in the 2018 IECC	

Proudly Operated by Battelle Since 1965

THANK YOU!

Building Energy Codes Program www.energycodes.gov/training

BECP help desk https://www.energycodes.gov/HelpDesk

