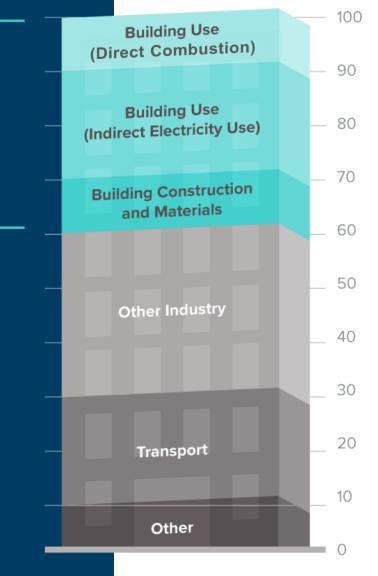
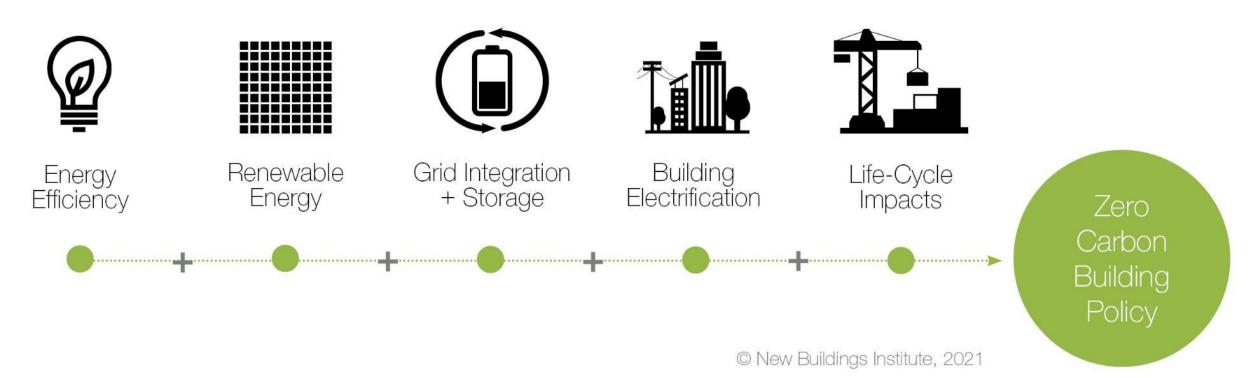
nb new buildings institute


Building Decarbonizatio Code

An overlay to the International Energy Conservation Code

Building Use and Operations account for

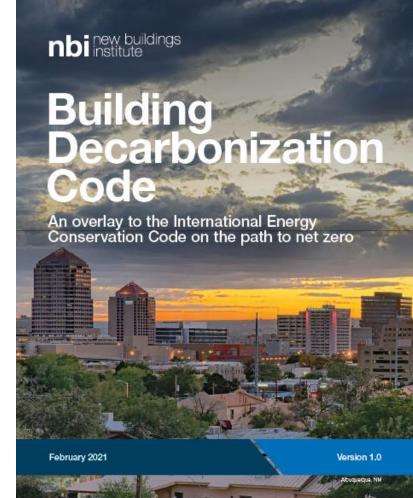

39% of CO₂ Emissions in the US

Source: IEA, 2019. % shares.

© New Buildings Institute 2020

The Five Foundations of Zero Carbon Building Policies

The Opportunity


https://commons.wikimedia.org/wiki/File:EV_charging_stations_Arlington_08_20

213.jpg http://www.flickr.com/photos/63483222@N03/14423707856/

Smith

Decarbonization Toolkit

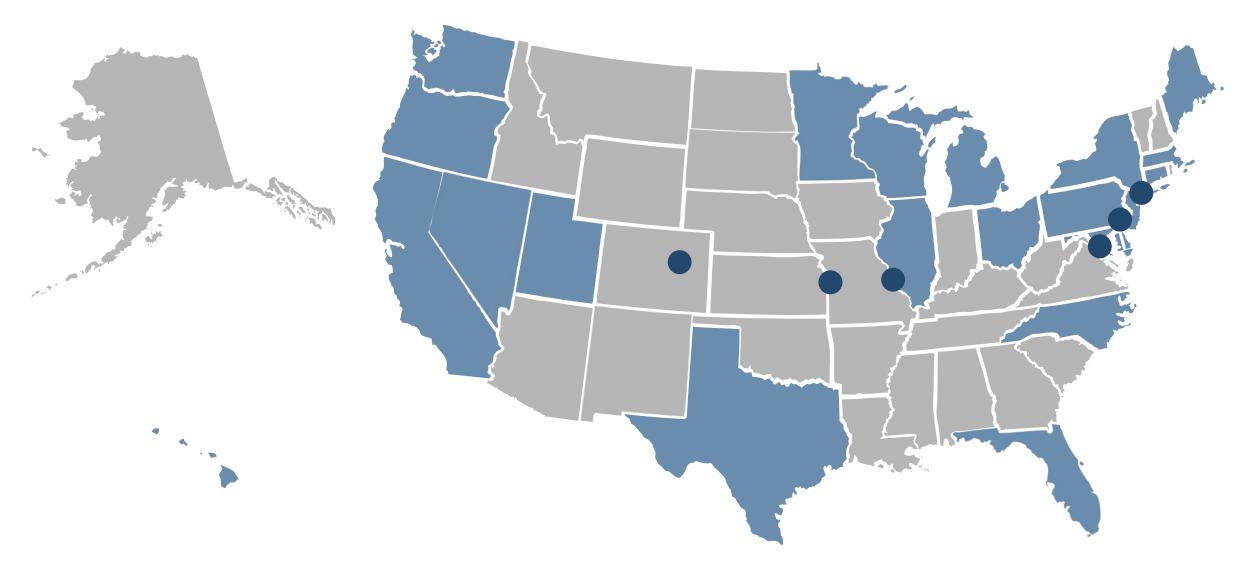
- Partnership with NRDC
- Part of a toolkit with three major pieces:
 - Actionable Code Language
 - Advocacy Framework
 - Outreach and Adoption Toolkit

Adoptable Code Language

C403 BUILDING MECHANICAL SYSTEMS

Add new text as follows:

C403.4.1.6 Demand responsive thermostats. All thermostats shall be provided with *demand responsive controls* capable of increasing the cooling setpoint by no less than $4^{\circ}F$ (2.2°C) and decreasing the heating setpoint by no less than $4^{\circ}F$ (2.2°C).


Exception: Health care and assisted living facilities.

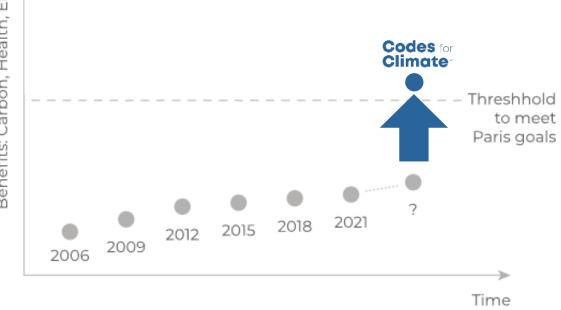
Demand responsive controls for thermostats are added based on language from California Title 24. In health care and assisted living facilities, thermostat setpoints can impact more than just thermal comfort, and temperature can be part of the health care being provided. To ensure that this requirement cannot have an adverse impact on those services, these facilities have been exempted from this requirement.

Revised Intent

C101.3/R101.3 Intent. This code shall regulate the design, and construction of buildings for the <u>effective use and conservation reduction of greenhouse gas</u> <u>emissions and for the efficient production, use and storage</u> of energy over the useful life of each building. This code is intended to provide flexibility to permit the use of innovative approaches and techniques to achieve this objective. This code is not intended to abridge safety, health or environmental requirements contained in other applicable codes or ordinances.

Codes Developing through 2023

Building Today for a Zero-Carbon Future



The Strategy: Codes for Climate™

We are creating **Codes for Climate™** to

work with state and municipal governments to deliver the codes and standards needed to achieve 1.5°C climate goals. Benefits: Carbon, Health, Energy

Tactical Actions

Support Policy-makers.

Align around a Code for Climate, and provide technical and policy support

Use what works.

Continue to engage and advance IECC and ASHRAE model codes and standards to meet climate needs

Disrupt what does not.

Create alternate and actionable code and policy language that provides states and cities the code they need.

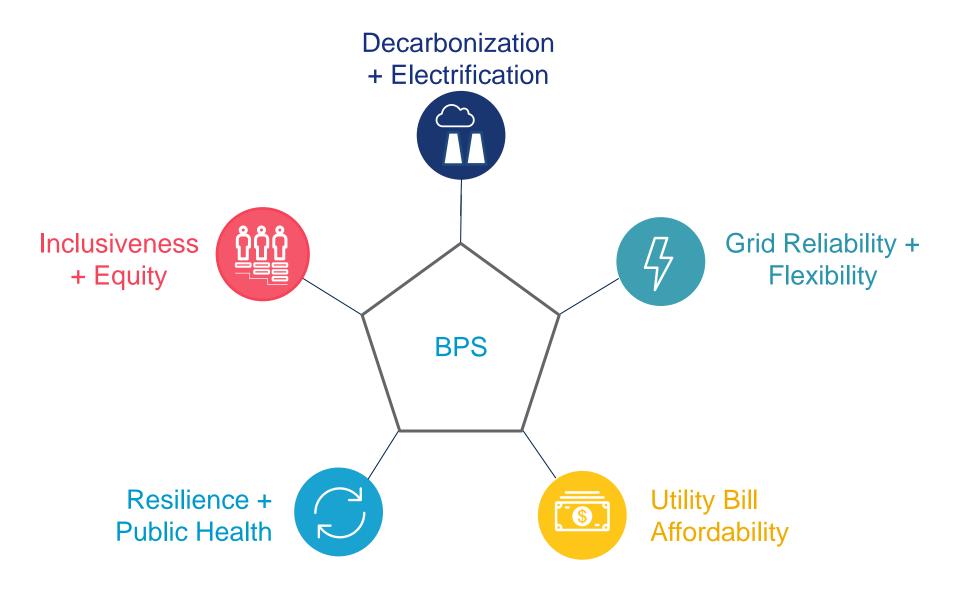
Code Scope and Goals

		Scope	Goal			
Ø	Efficiency	Base Codes / Building Systems	Highly Efficient / Passive Resilience			
	Electrification	Building Systems + Vehicles	Prohibit all on-site combustion Onsite resilience, Support RPS and additive procurement			
	Renewables	Onsite, Offsite + Procurement				
	Grid Integration	Controls, Storage	TOU Carbon reduction and Grid-sensitive			
	Lifecycle Impact	Embodied Carbon, Refrigerants + Deconstruction	Lifecycle GHG reductions			
	Equity	IAQ, Materials + More	Just transition, Improve health, Local Jobs, Affordability			

Questions?

Kim Cheslak Director of Codes kim@newbuildings.org

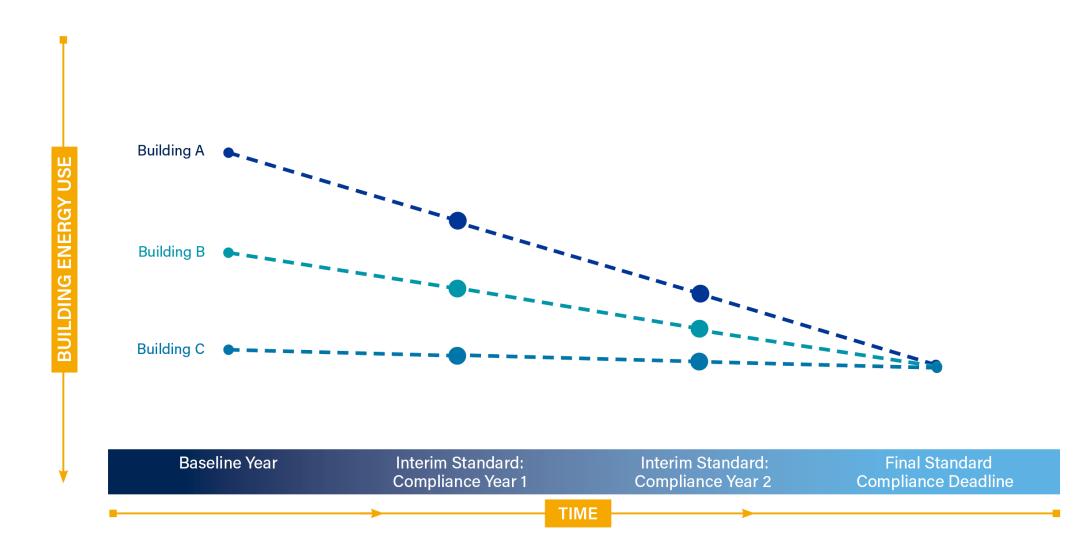
www.newbuildings.org

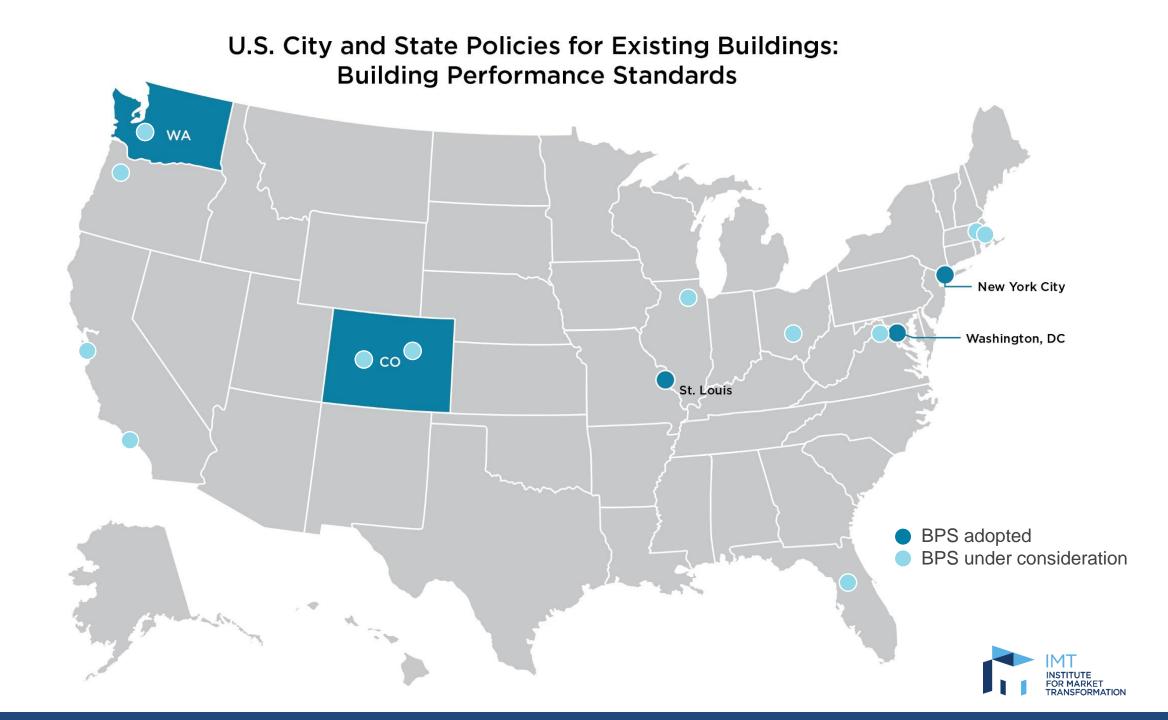

Building Performance Standards

Future of Codes Workshop

June 24, 2021

Building Performance Standards: A Platform for Building Regulation


BPS Around the United States


	Washington, DC New York		WA State	St. Louis, MO	s, MO Montgomery County		
Year Adopted	2019	2019	2019	2020	Pending		
First Compliance Deadline	2026	2024	2026	2025	~2026		
Minimum Threshold Performance	Standards set no lower than median ENERGY STAR score	CO₂e emissions limits on a sq. ft. basis	Site EUI targets are 15% less than 2009-2018 averages	Standards set no higher than 35 th percentile site EUI	In development to be set in regulation, based on site EUI		
Covered Buildings	Commercial and multifamily > 10K sf		Commercial > 50K sf	Commercial and multifamily > 50K sf	Commercial and multifamily > 25K sf		
Compliance Cycle	5 years	Buildings must comply annually; limits get stricter every ~5 years	5 years	4 years (6 years for affordable housing and houses of worship)	Long-term target with 4 year interim check ins		

Metric Comparison

Energy and Emissions Metrics	ENERGY STAR Score	Site EUI	Source EUI	GHGI	
Compatible with Long-Term Standards?	*				Site-to-Source multiplier is calculated as a
Fully Within Control of Owner and Occupants	*		*	*	national average. Does not reflect local conditions
ESPM Normalizes for Weather				*	Available for ENERGY
ESPM Normalizes for Business Characteristics (e.g. Density, Schedule)	*		*	*	STAR 1-100 Score-eligible buildings
Generation and Distribution Losses	*	*	*		-

Trajectory Approach: Planning Ahead

California Energy Commission

Flexible Demand Appliance Standards

Pierre H. duVair, Ph.D.

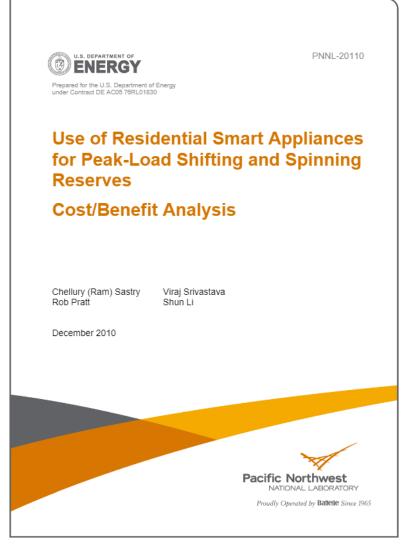
June 24, 2021

Promote Flexible Demand Technologies in Appliances

- Cost-Effective, GHG Reductions, Grid Benefits
- Consumer Consent
- Open Source & User-Friendly
- Cybersecurity & Communications
- Interface with Load Management / DR Programs
- Labeling and Certification

Evaluating Appliances

Initial Assessment


Load Shift Potential (MWh)

- Flexible Capacity (MW)
- Cost-Effective (\$)
- GHG Emission Reductions (mmtCO₂e)

Important Factors

- Technically Feasible
- Equity & Disadvantaged Communities
- Innovation & Market Growth
- Synergies with Policies
- Challenges and Risks

Load Shape of Appliances

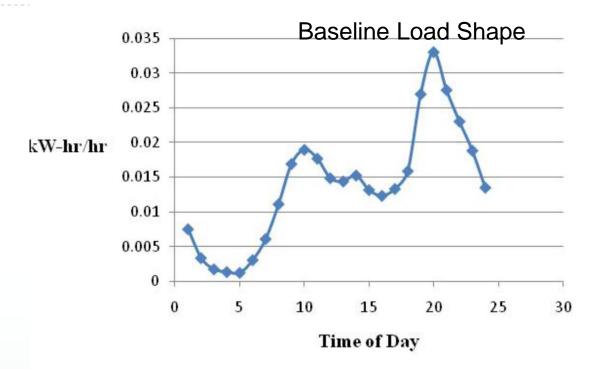


Figure 3.2. ELCAP Dishwasher Load Shape for an Average Annual Day

 Table 3-11. ELCAP Dishwasher Hourly Consumption on an Average Annual Day

Hour	1	2	3	4	5	6	7	8	9	10	11	12
kW-hr/hr	0.0075	0.0034	0.0017	0.0014	0.0012	0.0031	0.0061	0.0111	0.0169	0.0190	0.0177	0.0149
Hour	13	14	15	16	17	18	19	20	21	22	23	24
kW-hr/hr	0.0144	0.0153	0.0132	0.0123	0.0133	0.0159	0.0270	0.0330	0.0276	0.0230	0.0188	0.0135

The dishwasher load shape based on the data shown in Table 3.11 is shown in Figure 3.2 below.

Building Standards & Flexible Demand

Existing Title 24 Standards

- Appendix JA5 Specifications for Occupant Controlled Smart Thermostats
- Appendix JA13 Requirements for Heat Pump Water Heater Demand Management
- Section 110.12 Mandatory Requirements for Demand Management
- Building Codes and Reach Codes Adoption for EV Charging

Proposed Standards for 2022

- Section 140.10 Requirements for Photovoltaic and Battery Storage Systems
- Sizing requirements based on building space type and climate zone

LMS Supports Customer Access to Lower Rates

- MIDAS (Market Influenced Demand Automation Server) electricity rate database – 2021
- Customer education and outreach 2022
- Rate access tool to support third-party providers 2023
- Develop locational electricity rates **2024**

CEC Flexible Demand Standards Webpage:

https://www.energy.ca.gov/proceedings/energycommission-proceedings/flexible-demand-appliances

Pierre H. duVair, Ph.D. Manager, Appliances Office Email: <u>pierre.duvair@energy.ca.gov</u>